您好,欢迎访问四川省农业科学院 机构知识库!
筛选
科研产出
排序方式:

时间

  • 时间
  • 相关度
  • 被引量
资源类型: 中文期刊
关键词:参考作物蒸散量(模糊匹配)
15条记录
四川省不同区域参考作物蒸散量计算方法的适用性评价

农业工程学报 2016 EI 北大核心 CSCD

摘要:为实现参考作物蒸散量(reference crop evapotranspiration,ET0)在资料缺失情况下的准确计算,对ET0简化算法在四川省不同区域的适用性进行科学评价,将四川省划分为4个区域(I东部盆地区、II盆周山地区、III川西南地区和IV川西高原区),采用46个气象站点1954-2013年逐日气象资料,以1998 FAO-56 Penman-Monteith(PM)法的计算结果为标准,对具有代表性的6种简易算法48 Penman(48PM)法、Hargreaves-Samani(HS)法、Pristley-Taylor(PT)法、Irmark-Allen(IA)法、Makkink(MAK)法和Penman-Van Bavel(PVB)法的计算精度进行对比,结果表明:6种方法在四川省不同区域计算精度差异明显,HS法、PT法和PVB法较为精准,48PM法、IA法和MAK法误差较大,其中I区表现最好的为HS法,II、III和IV区表现最好的方法均为PT法;同时,除PT法和PVB法外,其余方法空间变异性较大(HS法在海拔较低的I、II区较为精准,在海拔较高的III和IV区结果远小于PM法,48PM法在四川东南地区的计算误差为11.1%~37.5%,在浅山丘区和高原区计算误差多大于50%)。因此,计算四川省的参考作物蒸散量时,推荐在东部盆地区使用HS法,盆周山地区、川西南地区与川西高原区使用PT法。

关键词: 蒸散 模型 气象 参考作物蒸散量 计算方法 适应性评价 四川省

 全文链接 请求原文
基于反距离权重法的长江流域参考作物蒸散量算法适用性评价

农业工程学报 2016 EI 北大核心 CSCD

摘要:为实现大区域尺度参考作物蒸散量(reference crop evapotranspiration,ET0)资料缺失情况下的准确计算,该文将长江流域划分为上、中、下游3个子区域,基于反距离权重法的新型空间展布方法得到3个虚拟站点分别代表每个子区域,利用长江流域102个站点1964-2013年近50a的逐日气象数据,根据FAO-56 Penman-Monteith(P-M)法、Hargreaves-Samani(HS)法、Irmark-Allen(I-A)法、Priestley-Taylor(P-T)法、Makkink(M-K)法、Penman-Van Bavel(PVB)法、1948年Penman(48-PM)法分别计算每个站点逐日ET0,并以P-M法为标准,利用Nash-Sutcliffe系数(CD)、逐日相对均方根误差(RMSE)、Kendall一致性系数(K)对其适用性进行评价,结果表明:在3个子区域6种ET0计算方法的日值与P-M法拟合方程确定系数R2均通过了极显著水平检验(α=0.01),长江上游P-T法ET0日值计算精度最高(ET0日值拟合方程斜率为1.030,RMSE=0.341 mm/d,CD=0.886,K=0.829),H-S法、I-A计算精度较低(ET0日值拟合方程斜率分别为1.427、1.308,RMSE=0.909、0.829 mm/d,CD=0.581、0.523,K=0.792、0.742),长江中、下游PVB法计算精度最高,P-T法计算精度次之,H-S法与I-A法计算精度较低;长江上游6种算法ET0月值的计算精度由高到低依次为P-T法、PVB法、M-K法、48-PM法、H-S法、I-A法,与P-M法的平均误差分别为0.27、0.35、0.51、0.48、0.74、0.78 mm/d;长江中、下游6种算法计算精度由高到低为PVB法、P-T法、M-K法、48-PM法、H-S法、I-A法;整个长江流域P-T法、PVB法与P-M法ET0计算结果相对误差均在35%以下,H-S法、I-A法计算精度较低,其相对误差基本高于40%;因此,PVB法与P-T法在整个长江流域的计算精度较高,可作为长江流域ET0简化计算推荐方法。

关键词: 气候变化 蒸散 模型 长江流域 参考作物蒸散量 反距离权重 空间展布 适用性评价

基于极限学习机的参考作物蒸散量预测模型

农业工程学报 2015 EI 北大核心 CSCD

摘要:为实现气象资料缺乏情况下参考作物蒸散量(reference crop evapotranspiration,ET0)高精度预测,以气象因子的不同组合为输入参数,利用FAO-56 Penman-Monteith公式计算的ET0作为预测标准值建立基于极限学习机(extreme learning machine,ELM)的ET0预测模型。选取川中丘陵区7个气象站点1963-2012年逐日气象资料进行模型训练与测试,并将模拟结果同Hargreaves、Priestley-Taylor、Makkink及Irmark-Allen等4种常用模型进行对比。结果表明:ELM模型能很好地反映气象因子同ET0间复杂的非线性关系,且模拟精度较高;基于最高和最低温度的ELM模型模拟精度(均方根误差和模型效率系数分别为0.504 mm/d和0.827)高于Hargreaves模型(均方根误差和模型有效系数分别为0.692 mm/d和0.741);基于最高、最低温度和辐射的ELM模型模拟精度(均方根误差和模型有效系数分别为0.291 mm/d和0.938)明显高于Priestley-Taylor(均方根误差和模型有效系数分别为0.467 mm/d和0.823)、Makkink(均方根误差和模型有效系数分别为0.540 mm/d和0.800)和Irmark-Allen模型(均方根误差和模型有效系数分别为0.880 mm/d和0.623)。因此基于最高、最低温度和辐射的ELM模型可以作为气象资料缺乏情况下川中丘陵区ET0计算的推荐模型。该研究可为川中丘陵区气象资料缺乏情境下ET0精确计算提供科学依据。

关键词: 蒸散 模型 作物 极限学习机 参考作物蒸散量 预测模型 川中丘陵区

 全文链接 请求原文
基于极限学习机的参考作物蒸散量预测模型

第18届CIGR国际农业工程学会世界大会论文集2 2014 CSCD

摘要:为实现气象资料缺乏情况下参考作物蒸散量(referencecropevapotranspiration,ET0)高精度预测,以气象因子的不同组合为输入参数,利用FAO-56Penman-Monteith公式计算的ET0作为预测标准值建立基于极限学习机(extremelearningmachine,ELM)的ET0预测模型。选取川中丘陵区7个气象站点1963-2012年逐日气象资料进行模型训练与测试,并将模拟结果同Hargreaves、Priestley-Taylor、Makkink及Irmark-Allen等4种常用模型进行对比。结果表明:ELM模型能很好地反映气象因子同ET0间复杂...

关键词: 蒸散 模型 作物 极限学习机 参考作物蒸散量 预测模型 川中丘陵区

基于遗传算法优化神经网络的参考作物蒸散量预测模型

资源科学 2014 北大核心 CSCD CSSCI

摘要:为实现气象资料缺乏情况下参考作物蒸散量(ET0)的精确模拟,利用川中丘陵区3个气象站点1999-2013年的逐日气象资料作为输入量,以FAO-56 Penman-Monteith模型计算的ET0作为标准值,建立基于遗传算法优化神经网络的ET0模拟模型(GA-BPNN),并将其模拟结果同Hargreaves、Mc Cloud、Priestley-Taylor和Makkink等4种常用ET0计算模型的计算结果进行对比。结果表明:GA-BPNN模型能够很好地反映ET0同气象因素之间的非线性关系,模拟精度较高;当基于温度资料模拟ET0时,GA-BPNN模型模拟精度高于Hargreaves和Mc Cloud模型;当基于温度和辐射资料时,GA-BPNN模型模拟精度明显高于Priestley-Taylor和Makkink模型。因此GA-BPNN模型可以作为气象资料缺乏情况下川中丘陵区ET0模拟的推荐模型。

关键词: 参考作物蒸散量 神经网络 遗传算法 预测模型 川中丘陵区

 全文链接 请求原文

首页上一页12下一页尾页